CCBuilder 2.0: Powerful and accessible coiled‐coil modeling
نویسندگان
چکیده
The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. LAY SUMMARY We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology.
منابع مشابه
CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies
MOTIVATION The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem m...
متن کاملExperimental and CFD Study of the Tube Configuration Effect on the Shell-Side Thermal Performance in a Shell and Helically Coiled Tube Heat Exchanger
"> Despite numerous studies of shell and helically coiled tube heat exchangers, a few investigations on the heat transfer and flow characteristic consider the geometrical <span style="font-size: 9pt; col...
متن کاملSCORER 2.0: an algorithm for distinguishing parallel dimeric and trimeric coiled-coil sequences
MOTIVATION The coiled coil is a ubiquitous α-helical protein structure domain that directs and facilitates protein-protein interactions in a wide variety of biological processes. At the protein-sequence level, coiled coils are quite straightforward and readily recognized via the conspicuous heptad repeats of hydrophobic and polar residues. However, structurally they are more complicated, existi...
متن کاملAutomated modeling of coiled coils: application to the GCN4 dimerization region.
A novel approach for the modeling of coiled coils through molecular dynamics is described and applied to the dimerization region of the yeast transcriptional activator GCN4. Initially, a model is created consisting of C alpha atoms only, representing an idealized coiled coil with infinite pitch. Human bias in the placing of the other atoms is reduced by an automatic building procedure using sim...
متن کاملTargeted anion transporter delivery by coiled-coil driven membrane fusion† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04282h Click here for additional data file.
Synthetic anion transporters (anionophores) have potential as biomedical research tools and therapeutics. However, the efficient and specific delivery of these highly lipophilic molecules to a target cell membrane is non-trivial. Here, we investigate the delivery of a powerful anionophore to artificial and cell membranes using a coiled-coil-based delivery system inspired by SNARE membrane fusio...
متن کامل